1/1

HESML V1R4 Java software library of ontology-based semantic similarity measures and information content models

dataset
posted on 19.07.2019 by Juan J. Lastra-Díaz, Ana Garcia-Serrano
HESML V1R4 is the fourth release of the Half-Edge Semantic Measures Library (HESML) detailed in [1], which is a new, linerarly scalable and efficient Java software library of ontology-based semantic similarity measures and Information Content (IC) models based on WordNet. HESML V1R4 implements most ontology-based semantic similarity measures and Information Content (IC) models based on WordNet reported in the literature, as well as the evaluation of three pre-trained word embedding models. It also provides a XML-based input file format in order to specify the execution of reproducible experiments on WordNet-based similarity, even with no software coding. HESML V1R4 introduces the following novelties: (1) a software implementation for the evaluation of three pre-trained word embedding file formats which support most of state-of--the-art models reported in the literature; (2) a software implementation of an intrinsic IC model and two new IC-based semantic similarity measures introduced by Cai et al. (2017); (3) a software implementation of a fast approximation of the Wu&Palmer (1994) measure commonly used in the literature; (4) the integration of a very large set of word similarity benchmarks; and finally (5), the correction of an error in our software implementation of the Leacock&Chodorow (1998) measure in previous HESML versions. HESML library is freely distributed for any non-commercial purpose under a CC By-NC-SA-4.0 license, subject to the citing of the main HESML paper [1] as attribution requirement. On other hand, the commercial use of the similarity measures introduced in [2], as well as part of the intrinsic IC models introduced in [3] and [4], is protected by a patent application [5]. In addition, any user of HESML must fulfill other licensing terms described in [1] related to other resources distributed with the library. References: [1] Lastra-Díaz, J. J., García-Serrano, A., Batet, M., Fernández, M., & Chirigati, F. (2017). HESML: a scalable ontology-based semantic similarity measures library with a set of reproducible experiments and a replication dataset. Information Systems, 66, 97–118. [2] Lastra-Díaz, J. J., & García-Serrano, A. (2015). A novel family of IC-based similarity measures with a detailed experimental survey on WordNet. Engineering Applications of Artificial Intelligence Journal, 46, 140–153. [3] Lastra-Díaz, J. J., & García-Serrano, A. (2015). A new family of information content models with an experimental survey on WordNet. Knowledge-Based Systems, 89, 509–526. [4] Lastra-Díaz, J. J., & García-Serrano, A. (2016). A refinement of the well-founded Information Content models with a very detailed experimental survey on WordNet. Universidad Nacional de Educación a Distancia (UNED). [5] Lastra Díaz, J. J., & García Serrano, A. (2016). System and method for the indexing and retrieval of semantically annotated data using an ontology-based information retrieval model. USPTO App, US2016/0179945 A1.

History

Licence

Exports

Logo branding

Licence

Exports